Myometrial expression of small conductance Ca2+-activated K+ channels depresses phasic uterine contraction.

نویسندگان

  • Amber Brown
  • Trudy Cornwell
  • Iryna Korniyenko
  • Viktoriya Solodushko
  • Chris T Bond
  • John P Adelman
  • Mark S Taylor
چکیده

Mechanisms regulating uterine contractility are poorly understood. We hypothesized that a specific isoform of small conductance Ca(2+)-activated K(+) (SK) channel, SK3, promotes feedback regulation of myometrial Ca(2+) and hence relaxation of the uterus. To determine the specific functional impact of SK3 channels, we assessed isometric contractions of uterine strips from genetically altered mice (SK3(T/T)), in which SK3 is overexpressed and can be suppressed by oral administration of doxycycline (SK3(T/T)+Dox). We found SK3 protein in mouse myometrium, and this expression was substantially higher in SK3(T/T) mice and lower in SK3(T/T)+Dox mice compared with wild-type (WT) controls. Sustained contractions elicited by 60 mM KCl were not different among SK3(T/T), SK3(T/T)+Dox, and WT mice. However, the rate of onset and magnitude of spontaneously occurring phasic contractions was muted significantly in isolated uterine strips from SK3(T/T) mice compared with those from WT mice. These spontaneous contractions were augmented greatly by blockade of SK channels with apamin or by suppression of SK3 expression. Phasic but not tonic contraction in response to oxytocin was depressed in uterine strips from SK3(T/T) mice, whereas suppression of SK3 channel expression or treatment with apamin promoted the predominance of large coordinated phasic events over tone. Spontaneous contractions and the phasic component of oxytocin contractions were blocked by nifedipine but not by cyclopiazonic acid. Our findings suggest that SK3 channels play an important role in regulating uterine function by limiting influx through L-type Ca(2+) channels and disrupting the development of concerted phasic contractile events.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Myometrial expression of small conductance Ca -activated K channels depresses phasic uterine contraction

Brown A, Cornwell T, Korniyenko I, Solodushko V, Bond CT, Adelman JP, Taylor MS. Myometrial expression of small conductance Ca -activated K channels depresses phasic uterine contraction. Am J Physiol Cell Physiol 292: C832–C840, 2007; doi:10.1152/ajpcell.00268.2006.—Mechanisms regulating uterine contractility are poorly understood. We hypothesized that a specific isoform of small conductance Ca...

متن کامل

CyPPA, a positive modulator of small-conductance Ca(2+)-activated K(+) channels, inhibits phasic uterine contractions and delays preterm birth in mice.

Organized uterine contractions, including those necessary for parturition, are dependent on calcium entry through voltage-gated calcium channels in myometrial smooth muscle cells. Recent evidence suggests that small-conductance Ca(2+)-activated potassium channels (K(Ca)2), specifically isoforms K(Ca)2.2 and 2.3, may control these contractions through negative feedback regulation of Ca(2+) entry...

متن کامل

The role and regulation of small conductance CA2+ activated K+ channel subtype 3 in myometrial contraction and placental development

Mechanisms that control the timing of labor have yet to be fully characterized. In a previous study (8), over-expression of small conductance calcium-activated K channel subtype 3 in transgenic mice, Kcnn3/Kcnn3 (also known as SK3), led to compromised parturition, which demonstrated the important role of KCNN3 in the delivery process. Based on these findings, we hypothesized that SK3 channel ex...

متن کامل

Potassium Currents in Freshly Dissociated Uterine Myocytes from Nonpregnant and Late-Pregnant Rats

In freshly dissociated uterine myocytes, the outward current is carried by K+ through channels highly selective for K+. Typically, nonpregnant myocytes have rather noisy K+ currents; half of them also have a fast-inactivating transient outward current (ITO). In contrast, the current records are not noisy in late pregnant myocytes, and ITO densities are low. The whole-cell IK of nonpregnant myoc...

متن کامل

A Computational Model of the Ionic Currents, Ca2+ Dynamics and Action Potentials Underlying Contraction of Isolated Uterine Smooth Muscle

Uterine contractions during labor are discretely regulated by rhythmic action potentials (AP) of varying duration and form that serve to determine calcium-dependent force production. We have employed a computational biology approach to develop a fuller understanding of the complexity of excitation-contraction (E-C) coupling of uterine smooth muscle cells (USMC). Our overall aim is to establish ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Cell physiology

دوره 292 2  شماره 

صفحات  -

تاریخ انتشار 2007